
	Mathematics	and	knowledge	
TOK	math	guest	lecture	by	Mr.	Chase	

	
Is	Mathematics	Invented	or	Discovered?	
	

Classic	question	in	the	philosophy	of	mathematics,	that	maybe	you've	already	thought	
about	or	talked	about	in	this	class:	

	
Is	mathematics	invented	or	discovered?	

	
	 Poll:	Here	are	your	options:	

1. Invented	
2. Discovered	
3. Unresolvable	
4. I	don’t	know	

	
[Give	a	minute	for	students	to	think,	then	have	them	raise	hands	and	tally	the	vote.]	Keep	in	
mind	the	options	I’ve	allowed	for	in	this	poll	because	they	might	foreshadow	something	later	
in	this	talk.	[the	notion	of	undecidable	statements]	
	
Here	are	the	typical	arguments	on	both	sides	of	the	issue.	

	
Invented:	 Aristotle	 would	 have	 been	 in	 this	 camp.	 People	 say	 things	 like	 “Newton	 and	
Leibniz	 invented	 Calculus.”	 Someone	 invents	 a	 new	 algorithm	 for	 something.	 Surely	 long	
division	was	invented,	not	discovered,	you	would	say.	Surely	we	came	up	with	our	number	
system	and	we	invented	all	the	conventions	and	symbols	we	use.	And,	to	counter	those	who	
might	claim	that	mathematics	is	discovered:	if	a	mathematical	theory	goes	undiscovered,	does	
it	truly	exist?	(If	a	tree	falls	in	the	woods…)	
	
Discovered:	Plato	would	have	been	in	this	camp.	Is	2଺଻ െ 1	a	prime	or	composite?	(In	1903,	
Frank	Nelson	Cole	proved	 it	was	composite	 in	a	 famous	 lecture	without	words,	simply	by	
writing	the	factors	on	the	board	and	multiplying	it	out.	It	was	actually	known	to	be	composite	
since	1876...that’s	almost	30	years	of	no	one	knowing	the	factors!)	Many	people	didn't	know	
for	years,	even	though	clearly	there’s	an	answer.	Once	it	was	known,	I	think	we	might	say	it	
was	discovered.	Is	the	twin	prime	conjecture	true?	[have	a	student	define	what	twin	primes	
are,	 if	 a	 student	 is	 able.]	 Well,	 someone	 will	 invent	 a	 proof,	 but	 its	 truth	 is	 itself	
transcendent.	This	is	an	example	of	something	still	yet	to	be	discovered.	Actually,	progress	on	
this	particular	question	has	been	made	in	the	last	year!	

	
[Handout	–	outline	of	the	talk/quotes/jokes]	
	
The	beauty	of	mathematics—or	“why	discovered	is	the	right	answer	to	the	first	question”	:‐)	
		

[Show	this	Geogebra	applet	with	quadrilateral	parallelogram	theorem	interactively...then	ask	
kids	 if	 this	 is	 a	 coincidence.	 Can	 they	 prove	 it?	 It's	 either	 true	 or	 false.	 But	 you	 have	
an	insatiable	desire	to	try	to	prove	it—a	hole	in	your	mathematical	heart!]	[Is	9௡ െ 1	always	
divisible	by	8?][How	can	you	prove	that	two	people	in	DC	have	the	same	number	of	hairs	on	
their	heads?][talk	about	existence	proofs	vs.	constructive	proofs,	if	time	allows]	
	



Make	no	mistake,	 I	am	in	Plato’s	camp	on	this	one.	 I	 think	mathematics	 is	discovered.	The	
mathematics	 that	 we	 think	 of	 as	 having	 been	 ‘invented’	 is	 merely	 a	 shadow	 of	 the	 true	
mathematics,	 projected	 into	 our	 temporal	 reality	 (to	 borrow	 Platonist	 language).	
Mathematics	is	pure.	
	
	

	
<taken	from	xkcd.com>	

	
“Mathematics	is	a	queen	of	science.”	‐	Carl	Friedrich	Gauss	

	
You	see,	math	is	about	beauty	and	purity.	That	realization	is	what	turns	young,	unsuspecting	
students	into	mathematicians.	“Some	of	you	may	have	met	mathematicians	and	wondered	how	
they	got	that	way.”	‐	Tom	Lehrer	:‐)	How	do	you	know	when	a	mathematician	is	hard	at	work?	
If	you	walk	into	the	halls	of	a	math	department	and	see	one	mathematician	busily	working	on	
his	computer	typing	up	a	paper	or	working	on	a	lecture,	he	is	not	actually	doing	work.	If	you	
see	another	mathematician	staring	out	the	window,	he	is	the	one	hard	at	work!	
	
No,	 really,	 it’s	 true.	Mathematicians	 do	mathematics	 because	 it	 is	 beautiful,	 regardless	 of	
whether	it	might	also	be	useful:	

o “Wherever	there	is	number,	there	is	beauty.”	‐	Proclus	(add	to	that	logic,	variable,	and	
proof…not	just	number)	

o “It	 is	 impossible	 to	 be	 a	 mathematician	 without	 being	 a	 poet	 in	 soul.”	 ‐	 Sofia	
Kovalevskaya	

o “The	mathematician	does	not	study	pure	mathematics	because	it	is	useful;	he	studies	
it	because	he	delights	in	it	and	he	delights	in	it	because	it	is	beautiful.”	‐		Jules	Henri	
Poincaré	

In	some	ways,	it	provides	a	safe	harbor	from	the	disorder	and	chaos	of	the	real	world.	Math	
is	so	pure	and	certain	that	we	can	avoid	the	debates	and	deconstructionism	that	plagues	so	
many	other	academic	areas:	

		



	
<taken	from	xkcd.com>	

	
Yes,	I'm	in	the	discovered	camp	when	it	comes	to	the	opening	question.	Math	has	always	been	
the	same.	If	you	were	to	go	to	a	different	planet,	math	would	still	be	the	same	(maybe	different	
axiom	systems,	maybe	they	would	use	a	different	base,	and	they	would	of	course	use	different	
symbols,	but	they	would	arrive	at	the	same	mathematics,	and	the	same	theorems).	People	say	
“math	hasn't	 changed	 in	30	years	 since	when	 I	was	 in	 school.”	True.	 It's	worse	 than	 that,	
actually.	It	hasn't	changed	in	4.6	billion	years!	That's	one	reason	why	math	is	so	beautiful,	so	
austere.	

	
	
What	parts	of	mathematics	are	we	free	to	invent?	

“Our	base	ten	number	system	was	 invented.”	I	completely	agree.	But	the	beauty	of	math	is	
that	the	base	in	which	we	do	it	doesn’t	actually	matter.	All	of	our	theorems	still	work	in	other	
bases.	The	choice	of	base	is	arbitrary.	Our	symbols	are	arbitrary.	
	
This	bridges	us	to	the	notion	of	formalism:	
	

“Mathematics	is	a	game	played	according	to	certain	simple	rules	with	meaningless	marks	
on	paper.”	‐	David	Hilbert	

	
Hilbert’s	quote	might	seem	funny	to	you,	but	it’s	a	perfect	description	of	mathematics.	At	one	
time,	 it	 seemed	 that	 mathematics	 was	 immutable.	 You	 might	 say	 “1+1=2”	 is	 founded	 in	
reality—it’s	 an	 immutable,	 unchangeable	 reality	 over	 which	 you	 have	 no	 say.	 But	
mathematicians	have	a	slightly	broader	view	than	that.	We	set	up	axiom	systems	and	then	
using	simple	sets	of	axioms,	we	prove	a	whole	host	of	results.	Generally,	we	want	these	rules	
to	confirm	our	intuitions	and	reflect	truth	in	the	outside	world	in	a	meaningful	way,	but	this	
isn’t	necessary.	For	example,	all	of	the	rules	of	algebra	that	you	know	and	love	are	based	on	
just	a	small	set	of	axioms,	called	the	Field	Axioms	(taken	from	Wikipedia):	

	
[Handout	–	field	axioms	and	Rudin	proofs]	
	 	



	

Closure	of	F	under	addition	and	multiplication	

For	 all	 a,	 b	 in	 F,	 both	 a	 +	 b	 and	 a	 ·	 b	 are	 in	 F	 (or	 more	 formally,	 +	 and	 ·	 are	 binary	
operations	on	F).	

Associativity	of	addition	and	multiplication	

For	all	a,	b,	and	c	in	F,	the	following	equalities	hold:	a	+	(b	+	c)	=	(a	+	b)	+	c	and	a	·	(b	·	c)	=	
(a	·	b)	·	c.	

Commutativity	of	addition	and	multiplication	

For	all	a	and	b	in	F,	the	following	equalities	hold:	a	+	b	=	b	+	a	and	a	·	b	=	b	·	a.	

Existence	of	additive	and	multiplicative	identity	elements	

There	exists	an	element	of	F,	called	the	additive	identity	element	and	denoted	by	0,	such	that	
for	all	a	in	F,	a	+	0	=	a.	Likewise,	there	is	an	element,	called	the	multiplicative	identity	element	
and	denoted	by	1,	such	that	for	all	a	 in	F,	a	 ·	1	=	a.	To	exclude	the	trivial	ring,	the	additive	
identity	and	the	multiplicative	identity	are	required	to	be	distinct.	

Existence	of	additive	inverses	and	multiplicative	inverses	

For	 every	 a	 in	 F,	 there	 exists	 an	 element	 −a	 in	 F,	 such	 that	 a	 +	 (−a)	 =	 0.	 Similarly,	 for	
any	 a	 in	 F	 other	 than	 0,	 there	 exists	 an	 element	 a−1	 in	 F,	 such	 that	 a	 ·	 a−1	 =	 1.	 (The	
elements	 a	 +	 (−b)	 and	 a	 ·	 b−1	 are	 also	 denoted	 a	 −	 b	 and	 a/b,	 respectively.)	 In	 other	
words,	subtraction	and	division	operations	exist.	

Distributivity	of	multiplication	over	addition	

For	all	a,	b	and	c	in	F,	the	following	equality	holds:	a	·	(b	+	c)	=	(a	·	b)	+	(a	·	c).	
	
These	 are	 the	 “simple	 rules”	with	which	we	 “play	 the	 game”	 of	mathematics.	 From	 these	
simple	axioms,	the	notion	of	subtraction	and	division	can	be	derived,	the	notion	of	exponents	
&	logarithms,	and	roots.	This	is	the	entire	subject	of	interest	in	an	analysis	course,	if	you	have	
the	privilege	of	 taking	one	someday.	For	example,	people	wonder	why	a	negative	 times	a	
negative	is	a	positive.	Here’s	the	answer:	We	can	prove	it	from	the	field	axioms!	If	we	don’t	
define	it	that	way,	we	get	contradictions.	This,	to	me,	is	a	much	more	powerful	and	appealing	
argument	than	those	who	try	to	justify	it	with	real	world	situations.	This	becomes	true	for	so	
many	other	similar	questions	too—why	can’t	we	divide	by	zero?	why	is	it	true	that	0	times	
any	number	is	0?	or	1	times	any	number	is	itself?	why	is	a	number	raised	to	the	zero	power	
equal	to	1?	In	all	of	the	answers	to	these	questions,	our	hand	is	forced	by	our	set	of	axioms	
(which,	I	remind	you,	we	freely	chose).	
	
Proposition	1.14	from	Rudin.	The	axioms	for	addition	imply	the	following	statements.	
	

(a) If	ݔ ൅ ݕ ൌ ݔ ൅ ݕ	then	ݖ ൌ 	(cancellation)	ݖ
(b) If	ݔ ൅ ݕ ൌ ݕ	then	ݔ ൌ 0	(uniqueness	of	the	additive	identity)	
(c) If	ݔ ൅ ݕ ൌ 0	then	ݕ ൌ െݔ	(uniqueness	of	the	additive	inverse)	
(d) െሺെݔሻ ൌ 	(negation	double)	ݔ
	

Proof.	If	ݔ ൅ ݕ ൌ ݔ ൅ 	give	addition	for	axioms	the	,ݖ
	

ݕ ൌ 0 ൅ ݕ ൌ ሺെݔ ൅ ሻݔ ൅ ݕ ൌ െݔ ൅ ሺݔ ൅ ሻݕ ൌ െݔ ൅ ሺݔ ൅ ሻݖ ൌ ሺെݔ ൅ ሻݔ ൅ ݖ ൌ 0 ൅ ݖ ൌ 	.ݖ
	



This	proves	(a).	Take	ݖ ൌ 0	in	(a)	to	obtain	(b).	Take	ݖ ൌ െݔ	in	(a)	to	obtain	(c).	Since	െݔ ൅
ݔ ൌ 0,	(c)	(with	– 	∎	.(d)	gives	(ݔ	of	place	in	ݔ
	
Proposition	1.15	from	Rudin.	The	axioms	for	multiplication	imply	the	following	statements.	
	

(a) If	ݔ ് 0	and	ݕݔ ൌ ݕ	then	ݖݔ ൌ 	(cancellation)	ݖ
(b) If	ݔ ് 0	and	ݕݔ ൌ ݕ	then	ݔ ൌ 1	(uniqueness	of	the	multiplicative	identity)	
(c) If	ݔ ് 0	and	ݕݔ ൌ 1	then	ݕ ൌ 	(inverse	multiplicative	the	of	uniqueness)	ݔ/1
(d) If	ݔ ് 0	then	1/ሺ1/ݔሻ ൌ 	.ݔ

	
Proposition	1.16	from	Rudin.	The	field	axioms	imply	the	following	statements,	for	any	,ݔ	ݕ,	

and	ݖ ∈ 	.ܨ
	

(a) 0ݔ ൌ 0.	
(b) If	ݔ ് 0	and	ݕ ് 0	then	ݕݔ ് 0.	
(c) ሺെݔሻݕ ൌ െሺݕݔሻ ൌ 	.ሻݕሺെݔ
(d) ሺെݔሻሺെݕሻ ൌ 	ݕݔ

	
Proof.	 ݔ0 ൅ ݔ0 ൌ ሺ0 ൅ 0ሻݔ ൌ 	.ݔ0 Hence	 1.14(b)	 implies	 that	 ݔ0 ൌ 0,	 and	 (a)	 holds.	 Next,	
assume	ݔ ് ݕ	,0 ് 0,	but	ݕݔ ൌ 0.	Then	(a)	gives		
	

1 ൌ ൬
1
ݕ
൰ ൬
1
ݔ
൰ ݕݔ ൌ ൬

1
ݕ
൰ ൬
1
ݔ
൰ 0 ൌ 0	

	
a	contradiction.	Thus	(b)	holds.	The	first	equality	in	(c)	comes	from		
	 	

ሺെݔሻݕ ൅ ݕݔ ൌ ሺെݔ ൅ ݕሻݔ ൌ ݕ0 ൌ 0,	
	
combined	with	1.14(c);	the	other	half	of	(c)	is	proved	in	the	same	way.	Finally,	
	

ሺെݔሻሺെݕሻ ൌ െሾݔሺെݕሻሿ ൌ െሾെሺݕݔሻሿ ൌ 	ݕݔ
	
by	(c)	and	1.14(d).∎	

	
	
[Pass	out	analysis	textbooks	for	students	to	skim]	

	
If	you	want	to	break	any	of	the	field	axioms,	you	may.	You	just	can’t	call	the	algebraic	structure	
that	you’re	working	with	a	field.	For	example,	the	absence	of	multiplicative	inverses	gives	rise	
to	the	notion	of	a	ring,	which	is	also	a	very	important	idea	in	mathematics	(albeit	one	you	
won’t	encounter	in	high	school).	

	
[Pass	out	algebra	textbooks	for	students	to	skim]	

	
Well‐formed	formulas.	“The	tidy	love	perforates	machines.”	“Thrh	emme	ajajaj”	“Three	and	
five	are	twenty.”	are	all	wrong,	but	for	very	different	reasons	(semantics,	syntax,...)	[struck	
for	the	sake	of	time]	
	



Kurt	Gödel	proved	some	path‐breaking	results	in	mathematical	logic.	He	showed	that	in	any	
axiom	system,	there	will	always	remain	statements	that	you	cannot	prove	true	or	false.	For	
example:	
	

Axioms:		 “it	is	raining	outside.”		
	 “if	it	is	raining,	I	will	take	an	umbrella”	
	
Statements:		 “I	will	take	an	umbrella.”	–	provably	true	in	this	axiom	system	
	 “It	is	not	raining	outside.”	–	provably	false	in	this	axiom	system	
	 “If	it	is	raining,	I	will	bring	my	pet	hamster	as	well.”	–undecidable	in	this	

axiom	system	
	
Okay,	 then,	 you	 might	 say,	 “let’s	 just	 expand	 the	 axiom	 system	 until	 it	 can	 speak	 about	
hamsters.”	You	can	try	to	do	that,	but	what	Gödel	showed	is	that	this	is	a	fool’s	errand.	You	
can	 try	 to	 expand	 your	 axiom	 system	 so	 that	 your	 system	 is	 complete—that	 is,	 every	
statement	can	be	assigned	a	value	of	true	or	false—but	then	your	system	will	necessarily	be	
inconsistent.	
	
At	 one	 time,	 mathematicians	 hadn’t	 really	 encountered	 such	 ‘undecidable’	 statements	 in	
mathematics.	But	now,	thanks	to	Gödel’s	work,	we	know	of	many:	The	Continuum	Hypothesis,	
The	Axiom	of	Choice,	Hilbert’s	Tenth	Problem,	and	The	Halting	Problem.	So	mathematicians,	
now,	are	interested	in	three	 types	of	results	when	considering	a	conjecture:	Provably	true,	
provably	false,	or	undecidable.	
	
If	a	statement	is	undecidable,	this	also	means	that	we	can	choose	the	statement	to	be	true	or	
false	and	in	either	case	it	will	be	consistent	with	all	the	other	statements	in	the	system.	
	
Furthermore,	he	proved	that	if	an	axiom	system	is	complete	(that	is,	we	avoid	all	undecidable	
statements),	then	it	necessarily	has	internal	inconsistencies.	

	
[Pass	out	Rebecca	Goldstein’s	book	Incompleteness]	

	
	
The	usefulness	of	mathematics		

	
“It’s	like	a	gorgeous	painting	that	also	functions	as	a	dishwasher!”	–	Ben	Orlin	
	
Mathematics	just	happens	to	also	be	useful.	But	its	correlation	to	the	real	world	is	actually	
quite	unreasonable.	Why	should	it	be	true	that	when	we	play	with	math	in	a	sterile	room	and	
discover	interesting	mathematics,	that	it	apply	to	or	describe	the	real	world	at	all??	It’s	really	
mind‐blowing.	
	
The	 fact	 that	mathematics	 so	 accurately	describes	 the	 real	world	 is	more	 support	 for	 the	
Platonic	 view.	We	 invent	 notation,	 true.	 But	 the	 actual	mathematics	 describes	 real	world	
phenomenon—like	 the	 interaction	 of	 particles	 or	 the	 growth	 of	 populations.	 We	 would	
certainly	 agree	 that	 these	 other	 aspects	 of	 reality—biology,	 chemistry,	 and	 physics—are	
discovered.	People	discover	atoms,	then	they	invent	a	name	for	them.	

	 	



	
A	justification	of	math	education	
		

Many	educational	 reformers	would	want	you	 to	 learn	math	because	 it	prepares	you	 for	a	
future	working	for	SpaceX	or	decrypting	state	secrets	at	the	NSA.	This	is	true.	Mathematics	
provides	 an	 excellent	 foundation	 for	 a	 cadre	 of	 high‐powered	 careers	 that	 reward	
mathematical	intelligence.	
	
But	in	my	opinion,	the	reason	math	is	important	for	you	to	learn	is	because	it	is	beautiful	and	
interesting,	not	necessarily	because	it	is	useful.	Our	goal	as	math	teachers	is	to	provide	you	
with	a	liberal	education	(meaning,	one	that	frees	you)	so	that	you	can	appreciate	the	beautiful	
things	and	engage	in	intelligent	conversation	with	all	kinds	of	people.	Some	people	think	the	
goal	of	education	is	to	make	you	a	good	citizen,	to	make	you	successful	or	rich,	or	to	land	you	
a	job.	But	I	have	a	slightly	more	religious	motivation...it’s	so	that	you’ll	glimpse	the	mind	of	
God!	
	
In	reality,	99%	of	you	won’t	directly	use	any	of	the	math	you	learn.	Depressing?	It	shouldn’t	
be.	 The	 same	 is	 true	 for	 all	 your	 other	 high	 school	 subjects.	 We’re	 giving	 you	 a	 liberal	
education.	

	
Conclusion	

Math	is	pure,	beautiful,	certain.	And	by	“math”	we	also	mean	logic,	formal	systems,	games,	
rules,	 reasoning,	 argument.	 It	 is	 discovered,	 not	 invented,	 though	 our	 notation	 and	many	
other	structures	are	invented	arbitrarily.	Unlike	other	arenas,	we	can	truly	be	certain	with	
math	in	ways	that	no	other	subject	can	enjoy.	


